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Abstract. In this work, an adaptive control strategy for the synchro-
nization of robotic manipulators is presented and verified with numerical
results. The idea of synchronization is that various systems, that may
have completely different dynamics, behave in a way that there exist no
residual difference of their outputs. Here we present an approach for the
synchronization of robot manipulators in spite of unmodeled dynamics
and parametric uncertainties, external disturbances as well as paramet-
ric and structural differences of the robots. It is achieved with the help
of a nonlinear controller with robust characteristics that only requires
the measurement of the angular positions. The uncertain functions are
grouped into a new state that'is, together with the other states of the
system, estimated by a high-gain observer. With the estimated skates
a feedback is implemented that is based on the idea of linearization.
Finally the proposed methodology is demonstrated for a two degree of
freedom (DOF) robot manipulator and numerical results are presented.
Keywords: Robot synchronization, Synchronization, Robust synchroniza-
tion.

1 Introduction

Synchronization is a phenomenon that has many examples in natural processes,
such as the perfectly coincided oscillation of two pendulum clocks hanging from
the same base [1], the synchronous firing of neurons [2],[3] or the symmetry of
animal gaits [4]. As in these examples the synchronization is achieved by inter-
connections in the systems without any external interference, we speak of self-
synchronization. Additionally we find numerous examples in different mechanical
and electrical structures, such as transmitter receiver systems, quadruped robot
movements [5] etc. where the synchronization is achieved by external inputs and
couplings, because of which we speak of controlled synchronization. This article
focuses on the controlled synchronization of robot manipulators. We find many
applications in production processes, where the synchronous behavior of robotic
systems is necessary for the production of parts with equal quality. In surgery,
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new minimal invasive robotic systems have been developed [6] that require the
synchronization of the robot with the trajectory that is generated by the oper-
ating surgeon.

While the control of robot manipulators is a classical control problem, the prob-
lem of synchronization of robots has not received much attention. We can find
some approaches in {7] where the parameters of the system are estimated by an
observer using only angular positions. Using those estimates an adaptive control
strategy is realized. However, this technique requires the exact knowledge of the
dynamies of the system, which results in a non robust approach. Therefore, in
a realistic case, there are no knowledge of the frictions terms, parameter varia-
tions, etc.

In this article we assume that the parameters and the dynamics of the robot
system are uncertain and that only the angular positions can be measured. De-
parting from the ideas presented in [8] we use the proposed robust nonlinear con-
trol scheme for the Multiple Input Multiple Output (MIMO) case. The method-
ology achieves the synchronization of an arbitrary number of robots in spite
of structural and parametric differences of the robots and it is robust against
external perturbations, friction and parameter variations. After a transforma-
tion of the system into a linearizable canonical form, the uncertain dynamics
and parameters are lumped into an new state. This new state is, as well as the
angular velocities, unknow and because of which it is estimated by a high-gain
observer. With the estimated states a stabilizing controller is implemented that
bases on the idea of linearization. Finally the robots are connected in a mutual
pattern that achieves the synchronization between the robots and with respect
to a trajectory that is given by the user.

2 Problem Statement

Let us consider a robotic manipulator that consist of w links and has m rotatory
degrees of freedom that create the generalized angular positions ¢;,7 = 1...m.
We assume that it is possible to generate m torques 7;, 7 = 1...m in the link
connections, for example with the help of electrical motors, hydraulic systems
etc. It was presumed that it is possible to measure the angular positions of
links at each point in time while the availability of the angular velocity was not
postulated. The links of the robot were modeled as perfectly stiff, i.e. bending
and vibration effects were neglected. With the help of the Lagrange or similar
equations we can derive the following model of a robot with m rotatory degrees
of freedom:

¢ =M@ (r - Clg.9)q ~ 9(a) - p(9)) (1)

M{q) € R™ ™ is the symmetric, positive definite inertia matrix while C(g, q)g €
R™ represent the Coriolis and centrifugal forces. g{q) = %q Euot € R™ denotes
the gravity forces and the friction in the element connections is represented by
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the function p(g) € R™. We decided to use the static friction model that was
proposed by [12]. It is represented by the following equation:

pi(¢i) = Bv.¢i + By, (1 = ———-Hezii‘lqi) + By, , (1 - ———1+eﬁ,i,2qi) i=1l.m (2)

Where B, is used to model the viscous friction while the remaining terms ap-
proximate the Coulomb and Stribeck friction effects.
We carry out the following transformation:

T1 Q1 T+l q1

Tm dm Tom dm

Now (1) becomes a nonlinear m x m MIMO system, that is characterized by
n = 2m first order differential equations:

z=f(z)+q ()71 + -+ 9m (Z)Tm
i Db [t @)

With the states z € R™, the system input 7 € R™ and the system output
y € R™. The system is characterized by the function f(z) € R" and the matrix
g(z) € R™*™:

xm+1

5 Omxm Omxm
@) = k) ota) = [ | )

M(z)! (-C(z, 2) — g(z) — p(2))

For the synchronization of two or various robotic manipulators, we will presume
that every system fulfills the following assumptions:

A.1: Only the angular positions [g;...gm] can be measured at each point in time,
i.e. not all the states x;, i = 1...n of the system are available.

A.2: There is no exact knowledge of the structure and the coefficients of M (g),
C(g,9), 9(q) and p(4)-

A.3: The robotic manipulators may be strictly different, but they all have the
same degrees of freedom and the same inputs.

There are numerous synchronization designs, such as serial or parallel master-
slave models etc. [7]. However, in this work we will discuss the mutual syn-
chronization pattern, where synchronous behavior is achieved with the interac-
tion between the robots. The robots are arranged in a network and every robot
could be connected to all the other robots. Let us suppose we have a number
of I robots. For mutual synchronization the trajectories of reference yref; , With



66 Manfred Giljum and Gualberto Solis-Perales

1=1..1, k=1..m of the robot i for the degree of freedom k are calculated as
follows:

l
Yrefinw = Ydp — Z I{sz‘,j (ik — Ysk) (6)

=137

Where yg € R™ is the desired trajectory that is given by the user, which is
equal for all the robots and has to be smooth. Kep, ; are the so called coupling
factors. They define how strong the robot ¢ will interact with the robot j. High
values of the coupling factors will lead to a fast synchronization between the
robots, low values will lead to a fast synchronization of the robots with the
desired trajectory yq. The synchronization of all robot manipulators is achieved if
lime—ool|Yres . () — yin(t)|| — 0 for i = 1.0 and k = 1...m. Tt is straightforward
that this is only possible if also lim e [|ya, (£) — yix(t)|| — 0 for i = 1.0 and
k = 1..m. The synchronization problem can be formulated as the design of the
interconnections between the robots and the creation of control feedbacks for the
robots. In the next chapter we will propose a robust control feedback strategy
that is well suited for the mutual synchronization of robots.

3 The robust synchronization scheme

For the implementation of the proposed feedback scheme the system has to be
transformed on Burnes Isidori Normal Form. Because this transformation re-
quires the knowledge of the relative degree vector, we will use the following
definition [11}:

Definition 2: (Relative Degree) The relative degree vector [ry...r,] of an affine
MIMO system as in (4) is defined by:

1. ngL’}hi(x) =0forallxclosetoxgand 1 <4, j<m, 0<k<r,—2

2. The matrix A(zg) is nonsingular :
LQJL}I—lhI(Ig} LgmL;l_lhl(l‘o)
Alzo) = : :
Lo L7 hm(0) o Lgp L7 hin(20)

With this definition we can find that, for the robot manipulators 4(z) = M (x)™?
and that the relative degree of every inputisr; = 2. As( =i+ ...+ 7 =n
the system has full order and therefore it has no internal dynamics. Now we can
carry out the transformation z = ¢(2), ¢ : R* — R", with:

z11 hi(z) T3
Z2.1 Lihy(z) T4l
dlz)=| 22 | = | hlz) | = | 22 )

2.m thm(l‘) T2m

g
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With this transformation the system (4) is linearizable and becomes:

21,1 zo2,1
2.1 a1(2) + 21 Bia(2)7s
Z=|Zi2| = 222
: (8)
i’g}m am(z) + 2;7;1 ﬂj,m(z)rj
T
y=[ - yml =[n1 - Z1m)

Tn the case of robot manipulators the transformation z = ¢(x),¢ : R* — R"
is always a diffeomorphism and thereby z = #(z) is an invertible transfor-
mation. This means, that if we can control (8) we can also control (4). The
vector a(z) : R™ — R™ is defined by ai(z) = L%hi(¢71(2)) and the ma-
trix B(z) : R?™ — R™ ™ by B;:(z) = Ly, Lshi(¢7*(2)). We find that a(z) =
(1 (7 2(2))-w- fam (¢ 7H2)))T and B(z) = M(¢~1(z))"*. Thus the linearizing
controller T = 8(z) (v — a(z)) is called the perfect control. If we choose v; for
i = 1...m as follows

Ui == 2"2’2' = yz = (9)
Gref, — pLi(0 = Yrefs) = P2.:(¥i = Yres,)
the outputs of the system can follow any affine vector of trajectories of reference
Yres € C? without any permanent error.

Remark 1: The controller 7 = B(2)" (v — a(z)) requires the exact knowl-
edge of all the states z; as well as the knowledge of o;(z) = L%hi(z) and
Bji(z) = Ly, Lshi(z) for i = 1...m,j = 1...m at each point in time.

However, as we have assumed in assumption A.2, in the case of the robot ma-
nipulators we have no exact knowledge of the structure and the coefficients
of M(q), C(g,4), 9(q) and p(¢) which means that also a(z) and B(z) are un-
certain. Besides, according to assumption A.l, only the angular positions y =
[11..-21m)7 = [a1--gm)T can be measured while the angular velocities § =
[z9.1.--22,m)F = [d1..-Gm]” are unknown.

Following the ideas that presented in [8], [9] and [10] where the controller requires
only least prior knowledge about the system (8) and can stabilize the system at
the origin or make it follow any affine trajectory. The control scheme does not
require the knowledge of a(z) and B(z). The idea is to lump these uncertain
terms into a new observable state that can be reconstructed from the available
angular positions [g1...gm]- We introduce the new variable vector @ € R™, which
contains the uncertain functions a(z) and 8(z) for 1 = 1..m:

Oi(z,7) = ci(2) + O (Bii(2) = Be; () 75 (10)

Jj=1
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Be(z) € R™ ™ is an user-defined approximation of B(z) that has to fulfill
sign{8e(z)) = sign(B(z)). With this we can rewrite the system (8), for i = 1...m:

214 =z
"L : ; 11
294 = @;(z, 7) + ;7;1 ,ch',.:(z)rj ( )

Now we augment our system by m additional states n:(t) = Oy(z,7) with § =
1...m. In this way (11) becomes:

= 204 .
Zo =i (t) + Ej;1 Be; (2)7; (12)
ni(t) = Zi(z,7m, 7)

Where =Z;(2,n,7) = 6892" %% + %@fi—;, in assumption A.1 we have supposed that

we have no exact knowledge about all the states z,. Consequently the new state
vector n(t) € R™ is also unknown. To solve this problem, we construct the
following high-gain observer that is based on the available states Y= [z11.-.21.m]

»:51,1' =22+ Liy (215 — £1,4)
2o =i + 3001 Be; (275 + LProi(210 — 51) (13)
f?i = LSK»&?‘,(ZLZ' - 21),;), 7= 1..m

Now we have to choose the coefficients 3,7 in such a way that the polynomials
s+ K158 + K2,i8 + K34, 1= l...m have poles with negative real parts. Lis a
tuning parameter that has a strong influence on the error dynamics. Based on
the estimates of the uncertainties 5(t) and the estimates of [22,1...29.m]T we can
construct the following linearizing-like feedback controller

7= 0e(2) v — ) (14)
With the input vector v € R™ that is defined as:

Vi = Uref, = PrilZa0 — Ures,) — p2.i(21,0 — Yregs)s (15)
i=1.m

Proposition 1: The robust feedback method consists of the dynamic estimator
(13) and the linearizing controller (15), that was constructed using the estimates
of © (i.e. n(t)) and z that are provided by the high-gain observer.

Proof The proof of stability is equal for all the m degrees of freedom. Because of
this, we will carry out a parallel proof for all the degrees of freedom and i = 1..m
will be valid. The stability of the observer, we define an estimation error e; € B3
in the following way: e;; = L™ 9*1(z;, — 5, ), j=1,2 and €3.; = 1n; —15;. Now,
using (12) and (13) we can write the error dynamics ¢; as:

€1, = L(—ry 15 + €2,i)
€2 = L(—rge1; +e3;) (16)
é3,i = _Lr[{rr_’_l’iel)i =



Robust Synchronization of a Class of Robot Manipulator 69

Or written in Matrix form:

—K1,i 10 0
é =1L —h’,2ﬂ;01 e;+ 10
—r3,i 00 = (17)
N e N
Ai(s) I;
= LA,;(IC}G«; + I

The matrix A;{x) is Hurwitz if the poles of the polynomial s%+#1 ;5% +K2,i5+K3,i
are in the left pane of the complex plane. If this is the case, then, according to
Lyapunov, there exists a positive definite and symmetric matrix P; such that
FPA; + A'irPi = —I,, where I, is the identity matrix of dimension n. Now we
choose Vi(e;) = ef Pie; as Lyapunov function and get:

Vi(es) = 2L, = — Ljjesl* + 2¢] BT (18)
< —Llles|l* + 2 Pl e |

If T satisfies ||| < r1 and |le;]] < rp for some mp > 0 and 7o > 0 then
I P;[lllesl|| I3l is a bounded function. Let p; > 0 be some positive constant and
20| Pille: NI Till < ps. We can write Vi(e;) < —Llle;||® + ps for the stability of the
observer [le;l] < \/% has to be fulfilled for all i. We can see, that the estimation
error e; depends directly on L. As L increases, €; will decrease and thereby also
the estimation error bound. Because of this, L should be chosen as big as possi-
ble. We conclude: As all I'; are bounded, if L > L* > 0 then e(t) = 0 fort — o0
and (2,7) — (z,7). With this we conclude, that {13) and (14) yield asymptotical
stabilization of the system (8).01

To illustrate the proposed control scheme we will now apply the methodology to
the case of a robot manipulator with m = 2 rotatory degrees of freedom. With
the help of the Lagrange or similar equations we can calculate M (9),Clg,4),9(q)
of (1) as follwos ’

M11 = mllgl + mzl% -+ mzlgg + I + Iy + 2mglllcgcos(q2)
= Min = mglgg + mglllcgcos(qz) + Iy

Moy = malZy +malilcacos(ge) + Iz

Moo = mglzz + I

Ciy = —malile2sin{(ga)de

Crz = —malileasin(ga) (g1 + )

021 = mglllcgqlsin(qg)

g1(q) = gsin(q(male +maly) + magsin(gs + g2)le2

g2(q) = magleasin(g + g2)

We will use the same friction term p(g) € R as in (2). Again ¢ € R? are the
angular positions of the links while ¢ € R? are the angular velocities and 7 € R?
are the torques that are applied to the links. I, 12 are the lengths of the links and
le1,leo are the distances to their centers of mass. my,ms are the masses of the
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two elements, I3, I, are their moments of inertia (including the motors, joints
ete.) and g is the acceleration of gravity. After replacing [z1,22]7 = [g1, )7,
(23, 24])7 =[Gy, ¢2]T and M* () = M~ (x) we can rewrite our system (1)

x1 Z3

To| Z4

T3} | fa(@) + Mg+ Mg 19)
T4 f_1(3f) -+ ﬂ'f;’l’r}, -+ 17\»:1(;’27‘2

Where (f5(z), fs(2)]T = M(z)* (—C(z, 2)z —g(z) — p(#)). Using Definition 2
we find that the relative degree is » = 2. Now we introduce the angmented
state vector 7(¢) = [m:(t). n2(#)]” and the user-defined approximation of Be(z) of
B(z) = M(¢™(2))~" and get:

211 =2

732,1 == 1 t) -+ ,361’1(2)1-1 +;’3€211(3)"'—2

7?1 (t) - E].(Z: T] T) ()0)
i1'2 = Z992 -

b2 = 1a(t) + Bey, ()T + Bes o (2)72
7?2(73) = 32(23 7, T)

For the reconstruction of the angular velocities [22,1,222]7 and the extended
state n(¢) we construct the high-gain observer:

Ziy =%+ Legi(z — 21,)

Z20 =i+ Z?:]l Be;n(2)75 4+ L2Ro (211 — 211)
M = L%ks1(z1,1 — 211)

212 = %22+ Lry (212 — £12) _

222 =1 + 25:1 Be;2(2)75 + L2 ko, m (212 — 21 5)
flo = L3k35(21,2 ~ £19)

With the estimates of (21) we can implement the following controller:

, -1 R
{Tl = }:-’331.1 (2) Bes 2 (2) v — ?71;’ (22)
T2 )862,1 (Z) ,362,2(2:) Vg -~ ﬁZ
In order to follow the smooth trajectory of reference y,.. ¢ = [Yresss Ure fz}T we
choose v = vy, v]7 as:

vy = Z:J_'refl ~pra{Zz21 — Qref;) —p2,1(211 ~ Yres, ) (23)
V2 = Yrefo = P12(222 = Jregy) = p2,2(21,2 — Yres,)

Now the coupling factors were chosen as X cp = 10 while the we consider arbitrary
initial conditions for ¢y;, g2; and gy, g2;- The controller was switched on after 5
seconds and after 10 seconds a perturbation torque Tpers = 10 Nm was applied
to both link connections of all the robots, Tpert Was tirned off after 15 seconds.
For the trajectory yg € R? we chose an arbitrary smooth function. The following
variables were chosen equally for all four robots:
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Fig. 2. (a) Tpert; and system input 74, (b) Tpert, and system input 7

perturbation is actually very low (after 5 and after 10 seconds). This shows that
the approach does not require the estimation of the perturbation.

4 Conclusions

In this work we have presented a robust control scheme that achieves synchro-
nization of robot manipulators with an arbitrary number of degrees of freedom.
It compensates unmodeled dynamics, uncertain or time-varying parameters as
well as external perturbations and requires only the measurement of the angu-
lar positions at each point in time. The central feature of this approach is that
the uncertainties are lumped into an extended state, which is reconstructed by
a high-gain observer. Based on this estimation a linearizing-like control law is
implemented that achieves the synchronization in combination with a mutual
connection pattern of the robots. The methodology was demonstrated for the
case of a 2 DOF robot manipulator and validated by numerical results. The
proposed control scheme can also be applied to other mechanical systems, such
as robot manipulators with linear degrees of freedom and in combination with
other synchronization patterns.
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